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The class of one-dimensional stretching functions used in finite-difference calculations is 
studied. For solutions containing a highly localized region of rapid variation, simple criteria 
for a stretching function are derived using a truncation error analysis. These criteria are used 
to investigate two types of stretching functions. One is an interior stretching function, for 
which the location and slope of an interior clustering region are specified. The simplest such 
function satisfying the criteria is found to be one based on the inverse hyperbolic sine. It was 
first employed by Thomas et al. (AU.4 J. 10 (1972), 887). The other type of function is a 
two-sided stretching function, for which the arbitrary slopes at the two ends of the one- 
dimensional interval are specified. The simplest such general function is found to be one based 
on the inverse tangent. The special case where the slopes were both equal and greater than one 
was first employed by Roberts. The general two-sided function has many applications in the 
construction of finite-difference grids. Examples of such applications are found in the listed 
references. 

I. INTR~OLJ~TI~N 

Finite-difference calculations of fluid flow problems are best carried out using an 
equispaced grid in a rectangular (or cubic) computational domain, with the flow 
variables and components of the position vector as dependent variables, and 
boundary conditions applied at the edges (or faces) of the domain, In order to 
minimize the number of grid points required for a given accuracy, one seeks 
boundary-fitted coordinate transformations that cluster points in regions where the 
dependent variables undergo rapid variation. These regions may be a result of body 
geometry (very large curvatures or corners), compressibility (entropy layers, shock 
waves, and contact discontinuities), and viscosity (boundary layers and shear layers). 
A complex flow may thus contain a variety of such regions of various length scales, 
and often of unknown location. An ideal grid would adjust with each time or iteration 
step to maintain optimum clustering. Such adaptive grid methods, which involve the 
solution of auxiliary equations, have been developed for one-dimensional problems 
[l-3]. Their extension to complex multidimensional flows is a difficult problem, 
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particularly when the regions requiring clustering do not have simple topological 
properties required by a finite-difference grid. 

There are many practical problems in which the locations and length scales of 
regions of rapid variation can be estimated a priori (e.g., known geometry, attached 
boundary layers, simple shock wave configurations). In these cases the clustering can 
be incorporated in automatic grid generators which solve an elliptic boundary-value 
problem [4-61. The distribution of grid points on the boundaries is then normally 
prescribed algebraically, using one-dimensional stretching functions. (Here, stretching 
function refers to any transformation involving stretching or clustering.) It is also 
possible to employ stretching functions to obtain a clustered grid from an unclustered 
grid by applying clustering to one coordinate family only. For some simple 
geometries, one can construct entire clustered grids purely algebraically, using only 
one-dimensional stretching and blending functions. 

The simplest class of one-dimensional stretching functions is that involving two 
parameters. In interior stretching functions, the parameters are the location of a single 
inflection point, and the slope at that point. In two-sided stretching functions, the 
slopes at the two ends of the one-dimensional interval are specified. The antisym- 
metric two-sided stretching function (with the same slope at each end) is of special 
interest, since the portion from the midpoint to either end defines a one-sided 
stretching function (with the slope given at one end and zero curvature at the other 
one). A one-sided stretching function can also be obtained as a special case of the 
interior stretching function, by locating the inflection point at one end. Since the end 
where the slope is given has zero curvature in this case, these two one-sided stretching 
functions are of a different nature. 

An interior stretching function based on the inverse hyperbolic sine was employed 
by Thomas et al. [7] in a numerical solution of inviscid supersonic flow over a blunt 
delta wing with elliptical cross section. The function was used to cluster points on the 
body at the vertices of very eccentric ellipses. The one-sided version clustered points 
in the flow near the body surface to resolve the entropy layer caused by the bow 
shock. No derivation of the stretching function was given, and the clustering 
parameter appearing in it was not related to the length scales of regions of rapid 
variation in physical space. 

An antisymmetric two-sided stretching function of a logarithmic type was 
employed by Roberts [8] to study boundary layer flows. The heuristic derivation of 
the function avoided consideration of the truncation errors associated with finite- 
difference approximations. While this function has been used successfully in many 
flow calculations, there is a need for a general two-sided function which allows 
arbitrary stretching or clustering to be specified independently at each end. An 
application would be problems in which the appropriate length scales requiring 
clustering are significantly different at the two ends. Another application is the 
distribution of grid points on a curve which is defined piecewise, where continuity of 
grid spacing is desired at the ends of the piecewise segments. A third application is 
the use of such a function as a blending or interpolating function to construct two- 
and three-dimensional grids using one-dimensional stretching functions and shearing 
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transformation. The construction of a single, well-ordered grid for wing body flows 
by Vinokur et al. [9] is an example of these applications. 

The present work has two objectives. One is to obtain simple, rational criteria for 
one-dimensional stretching functions, by considering the truncation errors inherent in 
finite-difference approximations. The functions introduced by Thomas et al. and 
Roberts will be found to be the simplest ones satisfying these criteria. The other 
objective is to derive a simple form of the general two-sided stretching function. 
Additional details may be found in the appendix of [ 121. 

II. TRUNCATION ERROR ANALYSIS FOR ONE-DIMENSIONAL STRETCHING FUNCTIONS 

An exact analysis of the truncation error inherent in a finite-difference calculation 
would require knowledge of the equation being solved and the finite-difference 
approximation that is used. Here we are concerned with the special situation where 
the solution contains a highly localized region of rapid variation with respect to some 
coordinate, and we seek approximate criteria for a stretching function that will be 
independent of the equation or difference algorithm. The quantities that are approx- 
imated are in general nonlinear functions of the unknowns and their spatial 
derivatives. The error analysis will be performed in terms of the fractional truncation 
errors for the spatial derivatives. 

Let the vector function r(o describe a &coordinate curve, where i is any parameter 
that varies smoothly with arc length. If A and B denote the ends of the curve, we 
introduce the normalized variables 

t=(i-i,)/(i,-i,) (14 

and 

ranging from 0 to 1. For simplicity, all partial derivatives with respect to r or t will 
be written as total derivatives. Let O(t) be any function of the unknowns. Outside of 
the region where d#/dt = 0 and d*#/dt’ = 0, we can define a natural length scale of 
the variation of d with respect to t as 

(2) 

Since the components of r also enter as dependent variables in the calculation of 
metrics and Jacobians, we similarly define the natural length scale of the variation of 
r with respect to f as 

(3) 
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Note that if t is proportional to arc length, then L,, is precisely the radius of 
curvature, normalized by the length of the curve. 

Assume first that t is used as the normalized computational variable (i.e., <= t), 
with At as the uniform grid spacing. Let @/dt denote the finite-difference approx- 
imation to d#/dt. Using Eq. (2), one can write any first-order accurate approximation 
as 

$=$ [l + O(L,’ At)]. 

Similarly, the approximation to dr/dt can be written as 

$;[I +O(L,‘At)]. 

If Lit’ or L; ’ became very large in some localized region, then a prohibitively small 
At would be required to obtain a desired fractional truncation error. Outside of the 
localized region, the excessive number of grid points would be wasted. The obvious 
remedy is to seek a new computational variable c$! for which L;/ and L;’ remain of 
O(l), even though Lit’ or L;’ could be locally very large. 

With the aid of the identities 

d# d$ dt -=-- 
dr dt d< 

and 

and definition (2), one can easily show that 

Similarly, using definition (3), one obtains the inequality 

One criterion for the stretching function r(t) is therefore 

L,’ = O(1). 

In addition, we require that 

(6) 

(7) 

(9) 

(10) 

(11) 
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and 

&I$= O(1). 

Consider the case where L;: is very large in some localized region. It follows from 
Eq. (11) that 

dt 
;iv = 0(L*J 

in that region. It is reasonable to assume that the thickness of the localized region, 
where Lit’ could remain large is at most of O(L,,). We thus require that Eq. (13) be 
valid over that distance. Furthermore, since L;,’ = O(1) outside of the localized 
region, it follows from Eq. (11) that dt/d< = O(l), i.e., that dt/dt does not become 
large anywhere. But these two additional requirements are satisfied if condition (10) 
is valid. Noting that 

it follows upon integration over a finite interval At that 

(14) 

Applying Eq. (15) to the localized region, for which At = O(L,,), we find, using 
Eq. (lo), that 

Thus Eq. (13) is satisfied over the entire localized region. Letting At = 1 in Eq. (15), 
we see that dt/d< = 0( 1) is satisfied over the complete range of t. In the event that 
L; ’ is larger than L&’ in the localized region, then condition (13) is replaced by 

This analysis is easily extended to higher order finite-difference approximations, as 
well as the treatment of higher derivatives. In order to consider fractional truncation 
errors due to a second-order accurate approximation to d#/dt (and also for regions 
where d’#/dt* = 0), it is appropriate to define a different length scale of the variation 
of 4 with respect to t as 

(18) 
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We now require that J? ;/ remains of O(l), even though i; it’ could be locally very 
large. Using the identity 

+&!E+-- d# d’t 
dt2 d< dt2 dt d(’ ’ 

we obtain the inequality 

(191 

In addition to satisfying Eq. (lo), the stretching function r(t) must satisfy 

L,’ = O(1). (21) 

Also, if ii,’ is larger than L;,’ in the localized region, condition (13) must be 
replaced by 

(22) 

A first-order finite-difference approximation to d2#/dt2 requires the introduction of 
the length scale 

(23) 

Combining Eqs. (2), (18), and (23), we see that 

1,’ = q/L;). (24) 

Thus conditions (lo), (21), and (13) or (22) are suffcient to guarantee that z;, 
remains of 0( 1). The length scale z,, is also the appropriate one to use at a point 
where d#/dt = 0. At such a point, using Eqs. (7) and (19), we obtain the relation 

The criteria for t(t) is again Eq. (lo), with Eq. (13) replaced by 

if the localized region of rapid variation occurs around the point d#jdt = 0. 
Conditions (22) and (26) are to be replaced by analogous ones containing irl and 
trl, if these are the more significant length scales. 
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In summary, one first defines length scales appropriate to the difference approx- 
imation and the location of the region of rapid variation. The criteria for the 
stretching function c(t) can be stated as: 

(1) All the inverse length scales of the variation of t with respect to r must be 
at most of order one throughout the range of t. 

(2) The slope dt/dr must be of the order of the minimum length scale of the 
variation of 0 or r with respect to t in the localized region of rapid variation. 

These criteria will ensure that most of the grid points will be concentrated in the 
localized region of rapid variation, with a sufficient number of points left in the 
remainder of the domain. The criteria will be used to investigate the two-parameter 
stretching functions of the next two sections. 

III. A GENERAL TWO-SIDED STRETCHING FUNCTION 

In this section we derive a general two-sided stretching function <(t; s,, s,), where r 
and t are normalized variables defined by Eq. (1), and the parameters S, and s, are 
dimensionless slopes at the two ends defined as 

and 

In order to be useful for constructing finite-difference grids, the function must be 
monotonic, and satisfy conditions (10) and (21) even if s0 or s, becomes very large. 
For a general range of applications, it would be desirable for the function to be 
simple, readily invertible, and to vary continuously over the complete ranges of s, 
and s,. 

An attractive candidate for such a stretching function is a scaled portion of a 
single, universal function w(z). For a given s0 and s,, the stretching function will be 
obtained by properly scaling the portion of the universal function from corresponding 
points z,, and zi. An additional requirement is that the unnormalized function &) be 
independent of the designation of a particular end as A or B. One can easily show 
that this restricts the universal function to be odd, i.e., 

w(-z) = -w(z). 

The simplest such functions which generate monotonic, readily invertible stretching 
functions are sin z and tan z. Their hyperbolic relatives are produced by letting z be 
complex. The inverse functions are formed by associating z with either c or r. One 
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can determine whether either universal function is suitable as a basis for a stretching 
function by applying conditions (10) and (21) for very large s,, or s,. Actually, the 
most extreme test occurs for the simpler antisymmetric case s,, = s,, which 
corresponds to z,, = -zi, with z being either real or pure imaginary. 

An evaluation on the antisymmetric two-sided stretching functions obtained from 
sin z and tan z is carried out for the case s,, = s, > 1 in [ 121. Only tan z produces a 
stretching function satisfying conditions (10) and (2 I), with the inverse length scales 
being logarithmically of O(1). The stretching function c(t) is a scaled portion of the 
inverse hyperbolic tangent. Expressing the hyperbolic tangent as a logarithm, we 
obtain exactly the function derived by Roberts [8]. It turns out that L,’ is a 
piecewise linear function of t, a property that was used by Roberts to define his 
function. This suggests a related stretching function, for which Lti’ is a piecewise 
linear function of I$ The corresponding universal function is the error function erf z. 
The associated stretching function is also analyzed in [2] and found to satisfy 
conditions (10) and (21). However, it is not invertible, and has larger maximum 
inverse length scales than the former stretching function. 

On the basis of these considerations, the universal function w  = tan z will be used 
to obtain a stretching function for arbitrary s0 and s, . Introducing the ranges 

AZ = z, -z. (28) 

and 

Aw=tanz,-tanz,, (29) 

we can define the normalized variables 

< = (z - Z&/AZ (30) 

and 

f = (tan z - tan z,)/Aw. (31) 

The slope of the stretching function is then given by 

d< Aw 
-;if=dzcos*z. 

Using the trigonometric identity 

tanz, -tanz,= 
sin(z, - zO) 
cosz,coszo’ 

we find for the parameters s, and S, the relations 

(32) 

(33) 

s() = 
sin AZ cos z,, 

AZ cos z, (34) 
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and 

s, = 
sin AZ cos zr 

AZ cos z,, ’ 

This suggests introducing the new parameters 

B=\/s,s, 

and 

A=&& 

The parameters A and B can then be expressed in terms of z0 and z, as 

sin AZ B=- 
AZ 

and 

cos z. 
A=-. 

cos z, 

Using the cosine sum identity, we can also write Eq. (39) as 

A=cosAz+tanz,sinAz 

and 

l/A = cos AZ - tan z,, sin AZ. 

(35) 

(36) 

(37) 

(38) 

(39) 

(404 

(4Ob) 

For a given value of B, AZ is obtained by solving Eq. (38). Equation (40) can then 
be solved to obtain z0 and Aw for a given value of A. The stretching function 
obtained from Eqs. (30) and (31) can then be written as 

t= 
tan(< AZ + z,,) - tan z,, 

Aw (41) 

While Eq. (41) is a formal expression for the general stretching function, it cannot 
be used for calculations in its present form. Depending on the value of B, AZ and Aw 
are either real or pure imaginary. For certain ranges of A and B, z. can become 
complex. Using the tangent sum identity and Eq. (39), we can eliminate z,, from 
Eq. (41) and obtain instead 

t= 
tan (TAz 

A sin AZ + (1 - cos AZ) tan (AZ ’ (42) 
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This can be further simplified by noting that A = 1 corresponds to the antisymmetric 
solution which was analyzed in [ 121. Let us denote this solution as u(r). Setting 
A = 1 in Eq. (42), and using the tangent sum identity, we obtain 

In terms of U, Eq. (2) then takes the simple form 

u 
t= 

A + (1 -A)u’ (44) 

which can be readily inverted as 

I4 = (l/A) + fi - 1/A)t ’ (45) 

Note that both u(t) and its inverse can be obtained as scaled portions of a rectangular 
hyperbola. For each function, the slopes at the two ends are A and l/A, respectively. 
Finally, we observe that for calculational purposes, Eqs. (44) and (45) are well 
behaved in the neighborhood of A = 1. 

We thus have the remarkable result that one essentially needs to know only the 
antisymmetric stretching function for the geometric mean of the slopes s, and s, . The 
square root of the ratio of those slopes determines an additional simple transfor- 
mation which produces the desired stretching function. Since both Eqs. (43) and (44) 
are invertible, the resultant stretching function is also invertible. The key 
trigonometric property making this result possible is that the tangent of a sum is a 
rational function of the individual tangents. By contrast, the sine of a sum involves 
the individual sines and cosines, and is not expressible as a rational function of sines 
alone. An analysis of a stretching function based on w  = sin z has been carried out, 
but is not presented here. The parameters corresponding to B and A turn out to be the 
arithmetic mean and difference of the two slopes. A separation into two functions 
corresponding to Eqs. (43) and (44) is not possible, and one must use the direct form 
corresponding to Eqs. (41) and 42). For B > 1, the inversion involves the solution of 
a quadratic equation, and the sign of A must be tested in order to choose the 
appropriate root. It is indeed serendipity that the tangent function dictated by trun- 
cation error considerations is also the much simpler one for constructing a general 
two-sided stretching function. 

The calculation of the antisymmetric function depends on the size of B. If B > 1, it 
follows from Eq. (38) that z is imaginary and we obtain the relations 

(46) 

and 
/+ taWW-if)1 

2 2 tanh(dy/2) * 
(47) 
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The inversion of Eq. (47) yields 

r _ 1 tanh-’ [ (2~ - 1) tanh(Ay/2)] 
2 

I 

DAY 
(48) 

Note that the hyperbolic tangent and its inverse can be expressed in terms of 
exponentials and a logarithm, respectively. 

For B < 1, AZ is real, and the corresponding results are 

sin Ax 
B=----- 

Ax ’ 

u- 1 pWxC--~)l 
2 2 tan(Ax/2) ’ 

(49) 

(50) 

and 

r _ 1 / tan-‘[(2u - 1) tan(Ax/2)] 
2 2Ax (51) 

When B is very near one, both of the formulations break down, since Ax and Ay 
approach zero. The appropriate expressions are obtained by expanding Eqs. (49) and 
(50) in powers of Ax. To first order in B - 1, one obtains 

and 

u=<[l +2(B- I)(<-0.5)(1--r)] (52) 

(2: u[ 1 - 2(B - l)(u - 0.5)(1 - u)]. (53) 

By scaling half of the functions, one obtains the one-sided stretching functions with sg 
given at t = 0 and zero curvature at t = 1. 

The results are: 

s,> 1 

sinh 2Ay 
so= ZAy 3 

t = 1 + tanWN- 111 
tanh Ay ’ 

and 

r= 1 + tanh-‘[(t - 1) tanh Ay] 

AY 

(54) 

(55) 

(56) 
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s, < 1 

and 

sin 2Ax 
so= 2Ax > 

t = 1 + tankw - 111 
tan Ax ’ 

r= 1 + tan-‘[(t - 1) tan Ax] 
Ax 

(57) 

(58) 

(59) 

t = <[ 1 - 0.5(s, - l)( 1 - <)(2 - 01 (60) 

r = t[ 1 + 0.5(s, - l)( 1 - t)(2 - t)]. (61) 

The two-sided stretching functions for B > 1 and one sided stretching function for 
so > 1 require the inversion of the function 

y = sinh x/x. (62) 

An approximate analytic representation of the inverse function x = f(y), valid over 
the range of y required by a stretching function, is derived in [ 121. The results are as 
follows: 

For y < 2.7829681 

x = ,/i$( 1 - 0.15~7 + 0.057321429jr’ - 0.024907295jj3 

+ 0.0077424461p - 0.0010794123~5), 

where 

y=y-1. 

For y > 2.7829681 

(63) 

(64) 

x = u + (1 + l/u) log(2u) - 0.02041793 + 0.24902722~ 

+ 1.9496443~~ - 2.6294547~~ + 8.567959 11 w4, (65) 

and 

2, = log y (66) 

w = l/y - 0.02852743 1. (67) 
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The maximum magnitude of the fractional error in y is 0.000267732 for 
1 < y < 69.64. The magnitude of the error reaches 0.00083 at y = 120.5. These errors 
are small enough so that the grids constructed by the resultant stretching functions 
will exhibit slope discontinuities that are negligible within the accuracy of any prac- 
tical finite-difference approximation. 

The two-sided stretching function for B ( 1 and one-sided stretching function for 
s0 < 1 require the inversion of the function 

y = sin x/x. (68) 

An approximate analytic representation of the inverse function is derived in [ 121. The 
results are as follows: 

For y < 0.26938972 

x = n[ 1 - y + y* - (1 + x*/6) y3 + 6.794732y4 

- 13.2055Oly’ + 1 1.726095y6]. (69) 

For 0.26938972 < y < 1 

x = fi (1 + O.lSg+ O.O57321429jj* + 0.048774238jj3 

- 0.0533377539 + 0.075845134y5), (70) 

where 

p=1-y. (71) 

The maximum magnitude of the fractional error in y is 0.000197 17, which is small 
enough for numerical applications. 

We can now summarize the procedure to obtain a general two-sided stretching 
function. Let c be the computational variable along a given coordinate curve, defined 
by specifying its value at the two ends of the curve. One must choose a physical 
variable I which parametrizes the curve. This could be the arc length or the projected 
distance on a given straight line (e.g., Cartesian coordinate). The normalized 
variables < and t, ranging from 0 to 1 at the two ends, are then defined by Eqs. (1). 
Given the dimensionless slopes s, and s, at the two ends defined by (27), one first 
calculates the new parameters B and A from (36) and (37). In most applications, one 
must obtain the values of t corresponding to given (usually equally spaced) values of 
c. This is done by first obtaining the value of the new intermediate variable U, and 
then calculate t from (44). The form of the function u(c) depends on the size of B. If 
B > 1, u(r) is given by Eq. (47), where dy is defined implicitly by (46) and an 
explicit analytic representation is found from Eqs. (62)-(67). If B < 1, u(r) is given 
by Eq. (50), where dx is defined implicitly by (49), and an explicit analytic represen- 
tation is found from Eqs. (68)-(71). If B is close to one within some prescribed error 
bound (IB - 11 < 0.001 is suggested), then u(r) is given by Eq. (52). For those 

58 l/50/2-4 
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applications where r(t) is desired, one first determines u from Eq. (45), and then 
calculates < from Eqs. (48), (51), or (53), depending on the size of B. One-sided 
stretching functions, with the slope s, defined at t = 0, are similarly obtained using 
Eqs. (54~(6 1). 

While it is appealing to view the general two-sided stretching function as a 
distortion of an antisymmetric stretching function via Eqs. (43) and (44), there are 
advantages in looking at the more basic forms of the solution given by Eqs. (41) and 
(42). If efficiency in terms of operations count is important, then the optimum form 
for the case B > 1 is derived from Eq. (42), as either 

t= 
tanh <Ay 

A sinh Ay + (1 -A cash Ay) tanh <Ay 

or 

e XAY _ 1 

* = eZtA~( 1 - AepAY) + AeAY - 1 * 

(72a) 

(72b) 

The most efficient form for the case B ( 1 is Eq. (41) with z replaced by x 
throughout. 

It is also instructive to study the general solution (41), and see how it reduces to 
different real representations for various ranges of A and B. This is carried out in 
[ 121. It is easy to demonstrate that for B < 1, the solution is a scaled portion of a 
tangent, while for B = 1 it is a scaled portion of a rectangular hyperbola. For B > 1 
(and the corresponding Ay given by Eq. (46)), the representation depends on the value 
of A. As shown in [ 121, if exp(-Ay) < A < exp(Ay), the solution is a scaled portion 
of a hyperbolic tangent. Outside of that range the corresponding function is the 
hyperbolic cotangent, while on the boundary it is the exponential function. 

When A = 1, the stretching function is antisymmetric, and the solution curve 
contains an inflection point. As A departs from one, the inflection point moves 
towards one end, and eventually could disappear. It is shown in [ 121 that an 
inflection point will be present if l/cash Ay <A < cash Ay for B > 1, and 
cos Ax < A < l/cos Ax for B ( 1. If B < 2/n, the solution must always contain an 
inflection point. The behavior of the solution in the B versus A plane, as well as the 
complex z plane, is illustrated in plots found in [ 121. 

IV. A GENERAL INTERIOR STRETCHING FUNCTION 

In this section we derive a general interior stretching function <(t, si, ti), where Si is 
the dimensionless slope at the inflection point ti, i.e., 

si = g (t,) (73) 
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and 

$J (fi) = 0 (Optic 1). 

We limit our consideration to si > 1, which is the only case of practical interest. 
We again look for a function which is a scaled portion of an odd universal function 
w(z). As in Section III, the simple functions sin z and tan z are considered first, and 
conditions (10) and (21) are examined for the antisymmetric case (ti = f) when si is 
very large. The evaluation is carried out in [ 121, and sin z is found to produce an 
appropriate function with inverse length scales that are logarithmically of O(1). The 
stretching function r(t) is a scaled portion of the inverse hyperbolic sine. 

The general interior stretching function for arbitrary ti is readily obtained from the 
universal function w  = sin z, by letting z = iy. In terms of the range Ay = y, - y,, 
and the implicity defined ci = QtJ, the final result can be written as 

t=ti 
I 
1 + sinh [4G - ti) I 

sinh ri Ay I ’ 

The inverse function is 

(75) 

C=5,++sinhh1[(t/ti- l)sinh<,.Ay]. 

The relation between & and ti (for a given Ay) is obtained from Eq. (75) by setting 
t = { = 1. The result can be written as 

l/ti = 1 - cash Ay + sinh Ay coth ri Ay. (77) 

Expressing the inverse hyperbolic cotangent in terms of a logarithm, we can write the 
inverse of Eq. (77) as 

li _ l log l + 4(eAy - 1) 

DAY 1 - ti(l - emAy) 1 * (78) 

Equations (76) and (78) are precisely the ones given by Thomas et al. [7]. 
If si and ri are the given parameters, the corresponding value of Ay must be 

calculated. This can be done by differentiating Eq. (75) and substituting into Eq. (73). 
Using Eq. (77) to eliminate &, we can write the result as 

1 

(sit, AY)~ = 

cash Ay - 1 + l/ti ’ _ 1 
sinh Ay 1 (79) 

This is an implicit equation for Ay involving two independent parameters. If the 
interior point is not too close to either end, and the slope s, is sufficiently large, one 
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can obtain a simplification. Assuming that exp(-2Ay) 4 1, we can approximate 
Eq. (79) as 

2si Jticl-ti> = 
sinh(dy/2) 

&I2 ’ 
(80) 

Equation (80) is in the form of Eq. (62), and one can use the approximate analytic 
inversion given in Section III. 

The special case of an antisymmetric solution is obtained by setting ti = $ = f . 
The results are 

f=’ 1 + sinh[Ay(t- $>I 
2 I sinh(Ay/2) i 

[ = + + -$ sinh-’ [(2t - 1) sinh(Ay/2)], (82) 

(81) 

where 

Si = S,/, = 
sinh(Ay/2) 

A~12 ’ 
(83) 

A one-sided stretching function is obtained by setting ti = ri = 0. The results can be 
written as 

t = sinh(tAy) 
sinh Ay 

(84) 

and 

1 
< = - sinh - ’ (t sinh Ay), 

AY 
(85) 

sinh Ay 

si = so = 77 
(86) 

It is interesting to compare the one-sided stretching function derived from the 
hyperbolic tangent (Eqs. (54)-(56)) with the function derived from the hyperbolic 
sine. Letting the subscripts T and S stand for the tangent and sine solutions, we see 
from Eqs. (54) and (86) that for a given so, 

2Ay, = Ay, . 637) 
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The maximum inverse length scale L,’ as defined by Eq. (2) occurs at t = 0 for the 
tangent solution, and has the value 

@,‘L,,,,>T = 24, tanh &. (88) 

For the sine solution, the maximum occurs at t = 1, and has the value 

((~,r’LA = 4, tanh 4,. (89) 

Thus, for s,, large enough so that tanh dy, N tanh dy, 2: 1, the two solutions have the 
same maximum inverse length scale. The minimum slope (dt/dt),i, occurs at t = 1 
for both solutions. The results are 

((dt/dt)min)T = ta:yAyT 
T  

and 

((d~/dt),i,), = tand)eAys. 
S 

(90) 

(91) 

For large sO, we thus obtain 

((dr/dt)rnin)S 2: f((dt/dt)min)T’ (92) 

The one-sided function derived from the hyperbolic tangent thus has more points at 
the unclustered end (t = 1) than the one derived from the hyperbolic sine, for iden- 
tical clustering at t = 0. The difference is because of the fact that the zero inflection 
point occurs at t = 1 for the first, and t = 0 for the second. The particular application 
would determine which of these two is preferable. 

V. CONCLUDING REMARKS 

In this work it has been assumed that the metrics and Jacobians that arise in the 
transformed equations are calculated by finite differences. If the equation r(t) of the & 
coordinate curve is known analytically, and the transformation t(r) is also given 
analytically, then the metrics and Jacobians can be analytically determined from the 
derivatives dr/dt and d/d<. The truncation error in the numerical calculation will 
then be due to solely the finite-difference approximations to the derivatives of 4 with 
respect to r. When $ varies monotonically with t, the optimum transformation would 
be one in which r varied linearly with 0, since this would result in zero truncation 
errors. 

In order to compare transformations for the numerical and analytic treatment of 
Jacobians and metrics, consider a strictly one-dimensional case in which the single 
unknown u varies monotonically with distance X. Assume a highly localized interior 
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region of rapid variation whose thickness is proportional to the small parameter v. A 
simple example of such a solution is 

u - tanh(+), (93) 

where x = 0 in the localized region. This is actually the steady-state solution of 
Burgers’ equation with fixed end conditions. For the analytic treatment of Jacobians 
and metrics, it follows that r(x) should be a scaled portion of the hyperbolic tangent. 
The analysis of [2], which assumes a numerical treatment of Jacobians and metrics, 
shows that this choice is completely unsuitable, and instead favors a scaled portion of 
the inverse hyperbolic sine. If the differential equation is written so that only 
derivatives of v appear, then the hyperbolic tangent transformation should lead to a 
numerical solution with no truncation errors. But the equation can also be written in 
a form involving derivatives of several functions of u. An example is a strong conser- 
vation form. In this situation one has several variables 9(r) to be approximated by 
finite differences, and no single transformation t(r) is optimum for all of them. If v is 
very small, the hyperbolic tangent transformation would put all the interior grid 
points inside the region of rapid variation. There would be no points to resolve the 
boundary of this region. By contrast, the inverse hyperbolic sine transformation puts 
a sufficient number of points outside the region of rapid variation to resolve the 
complete one-dimensional region. 

This discussion indicates that there are special situations and forms of the 
differential equations for which an analytic treatment of Jacobians and metrics can 
provide a desired accuracy with fewer grid points than the numerical treatment. These 
cases appear to be restricted to monotonic distributions that can be approximated by 
simple analytic expressions. For general applications of one-dimensional stretching 
functions, these special situations will not be met. It is then best to treat the Jacobians 
and metrics numerically, and use the stretching functions derived in Sections III and 
IV. 

Another assumption in the derivation of the stretching functions is that the dimen- 
sionless length scale of the localized region of rapid variation could be extremely 
small. This requires the dimensionless slope of the transformation &/dt to be 
extremely large. If this condition is not encountered, and transformation slopes 
remain of O(l), then the form of the stretching function is not critical. For example, 
many authors have used a scaled exponential as a one-sided stretching function. This 
is perfectly reasonable as long as the one-sided slope s0 is not much larger than one. 
But one can readily show that the maximum inverse length scale is exp(s,) for large 
s,,. Thus a simple exponential does not yield a suitable one-sided stretching function 
for very large slopes. 

It should be made clear that Roberts was not the first one to use a stretching 
function involving the hyperbolic tangent. Mehta and Lavan [lo], in an investigation 
of flow in a two-dimensional channel with a rectangular cavity, used a transformation 
based on the hyperbolic tangent to transform a semi-infinite region into a finite 
computational region, and to cluster grid points at the corners of the cavity. The 
maximum dimensionless slope, based on the length of the cavity, had a value of 
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0.8664 in their calculations. The transformation would have been a poor one if they 
had required a very large slope at the corner, as shown by the analysis of Section IV. 
The same authors [ 111 used a stretching function based on the inverse hyperbolic 
tangent in a study of the two-dimensional flow around an airfoil. A previous transfor- 
mation had transformed the region external to the airfoil into a unit circle. The 
stretching function was necessary to cluster points further near the airfoil surface (to 
capture the boundary layer) as well as the free stream (to overcome the stretched grid 
produced by the first transformation). In their calculation, the nondimensional slopes 
at the two ends were 5.77 and 27.8. In this instance, the use of the hyperbolic tangent 
was both appropriate and necessary, as shown by the analysis of Section III. 

An important criterion in the development of a two-sided stretching function is a 
continuous behavior as s, and s, varied from zero to infinity. This is necessary to 
obtain smooth grids constructed algebraically using one-dimensional stretching 
functions. For B > 1, the required function was found to be based on the inverse 
hyperbolic tangent. At first glance, the same function could be used for B < 1, simply 
by interchanging < and t in the expression. (This is what was actually done in the 
earlier stages of this work.) But this would violate the desired continuous behavior in 
the neighborhood of B = 1. The analytic continuation of the inverse hyperbolic 
tangent is the inverse tangent, which differs from the hyperbolic tangent. One can 
actually construct antisymmetric functions which are self invertible in this sense, but 
they do not include the elementary functions, and therefore would not be useful as 
stretching functions. Since the inverse tangent is not self invertible, it is necessary to 
use two different representations in calculating the stretching function numerically. 

The use of the stretching functions derived in this work requires specifying their 
slopes at one or two points. The values are either obtained from matching slopes with 
another function, or estimating the length scale of a localized region where an 
appropriate dependent variable undergoes rapid variation. Admittedly, in a complex 
situation, the derivation of an appropriate length scale is not easy, and the value to 
assign to the slope can be somewhat arbitrary. Nevertheless, if a consistent criterion 
is used in assigning slope values, useful grids for numerical calculations can be 
generated. Recent examples of complex grids which were generated using the general 
two-sided stretching function are found in [ 13-l 81. 
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